

Vitamin K Another Calcification Nutrient to Consider?

Sarah L. Booth, Ph.D.
Associate Director and Senior Scientist
Director, Vitamin K Laboratory

Vitamin K and Calcification

- Forms of vitamin K
- Dietary intakes and requirements
- Role in regulation of calcification
- Evidence for vitamin K interactions with vitamin D

Implications

Overview of Vitamin K Forms

Vitamin K Forms

Dietary Sources of Menaquinones (Has not been systematically analyzed in the US food supply)

Food	n	K1	MK-4	MK-5	MK-6	MK-7	MK-8	MK-9
					μ g/100 g			
Natto	5	34.7	-	7.5	13.8	998	84.1	-
Buttermilk	6	-	0.2	0.1	0.1	0.1	0.6	1.4
Whole Yoghurt	6	0.4	0.6	0.1	-	-	0.2	-
Hard Cheeses	15	10.4	4.7	1.5	0.8	1.3	16.9	51.1
Soft Cheeses	15	3.6	2.7	0.3	0.5	1.0	11.4	39.6
Curd Cheese	12	0.3	0.4	0.1	0.2	0.3	5.4	18.7
Egg Yolk	8	2.1	31.4	-	0.7	-	-	-

Schurgers L, Vermeer C. Haemostasis 2000; 30:298-307

Dietary Supplements

- Phylloquinone is globally available as a dietary supplement
- MK-7 is globally available as a dietary supplement
- In Japan, MK-4 is used therapeutically in doses of 45,000 μg/day
- Combinations of Phylloquinone, MK-4 and MK-7 are available at doses considerably higher than is available from food
 - No data available on the potential interactions among vitamin K forms when co-administered

Dietary Intakes and Requirements of Vitamin K

Dietary recommended intakes (DRI) for vitamin K in adults

		DRI		
Country	Sex	(μg/day, unless otherwise indicated)		
		19-50y	>51y	
UK	Women	1 μg/(kg d)	1 μg/(kg d)	
UK	Men	1 μg/(kg d)	1 μg/(kg d)	
WHO/ Bosnia/	Women	55	55	
Herzegovina/Poland	Men	65	65	
Nov. Zoolovel /Avetualia	Women	60	60	
New Zealand /Australia	Men	70	70	
lanan	Women	60, 65 ^b	65	
Japan	Men	70	70	
Germany/Switzerland/	Women	60	65	
Austria	Men	70	80	
USA/Canada/	Women	90	90	
Montenegro/ Albania	Men	120	120	

Evidence of Adverse Events

- No recorded evidence with phylloquinone or MK-4 among individuals with normal clotting function
- Any vitamin K form will interfere with efficacy of coumarin-based oral anticoagulants (eg. warfarin)
- Some indication that MK-7 may interfere with oral anticoagulants at a much lower dose compared to phylloquinone and MK-4

What does this mean?

We do not know how much vitamin K is required for optimal health

 Current guidance: Eat a diet rich in vegetables and plant oils (DOES NOT APPLY TO PATIENTS ON WARFARIN)

Vitamin K Function

VK is critical for some proteins to function

Warfarin Interrupts Vitamin K Cycle

VK and bone: Disentangling the myths from facts

Why Consider Vitamin K in Bone Health?

- VK is in bone
- Important bone protein requires VK for function
- VK status rapidly responds to depletion and repletion
- VK intakes are low in certain subpopulations eg. UK children and elderly

Phylloquinone Intake & Bone: Observational Studies*

Hypothesis	# of Studies In Support of Hypothesis	
	Yes	No
↑ K1 intake → ↓ Hip fx	3 (adults)	2 (adults)
↑K1 intake /plasma → ↑ BMD	3 (adults)	2 (children) 2 (adults)

^{*} Cross-sectional and Longitudinal Designs

MK-7 Intake & Bone: Observational Studies*

Hypothesis	# of Studies In Support of Hypothesis	
	Yes	No
↑ MK-7 intake/plasma → ↓ Hip fx	2 (adults)	1 (adults)
↑ MK-7 intake/plasma→ ↑ BMD	2 (adults)	-
↑ MK-7 intake → ↓ bone turnover		1 (children)

^{*} Cross-sectional and Longitudinal Designs

Phylloquinone Supplementation Studies

Study	Control (C)	Duration	Difference in	Ref
	vs	(M)	Hip BMD	
	Treatment (T)			
Tufts	C: vit D + Ca	36	No difference	Booth
(M+F; 60-80y)	T: vit D + Ca + 500 μg K1			JCEM 2008
Maastricht	C: placebo	36	T < C; p <0.05	Braam
(F; 50-60y)	T1: vit D + Ca			Calc Tiss Intl 2003
	T2: vit D + Ca + 1,000 μg K1			
Maastricht	C: placebo	24	No difference	Braam
(F; endurance athletes)	T1: 10,000 µg K1			Am J Sports Med 2003
Wisconsin	C: vit D + Ca	12	No difference	Binkley
(F; >55y)	T: vit D + Ca + 1,000 μg K1			JBMR 2009
UK Bones &	C: placebo	24	No difference	Bolton-Smith
Vitamins	T1: vit D + Ca + 200 μg K1			JBMR 2007
(F;>60y)	T2: 200 µg K1			
ECKO	C: vit D + Ca	24	No difference	Cheung
(F;40-82y)	T: vit D + Ca + 5,000 μg K1			PLoS Medicine 2008

MK-4 Supplementation Studies

Study	Control (C)	Duration		Ref
	vs	(M)	Hip BMD	
	Treatment (T)			
Maastricht	C: placebo	36	No difference	Knapen
(F; 5575y)	T: 45 mg MK-4		(but there was improved femoral neck geometry)	Osteo Intl 2007
Wisconsin	C: vit D + Ca	12	No difference	Binkley
(F; >55y)	T: vit D + Ca + 45 mg MK-4			JBMR 2009

MK-4 + Calcium Does Not Reduce Fracture Risk Above That Of Calcium Alone

(Four-year trial of 4378 post-menopausal women)

Inoue et al *J Bone Miner Metab* 2009

MK-7 supplementation for three years does protect against bone loss

180 μg/d MK-7 (n=112) vs placebo (n= 111) – no calcium or VD in either group

F; 55-65y (postmenopausal)

* P<0.05; # P<0.001

What does this mean?

- Phylloquinone and MK-4 supplementation does not appear to reduce bone loss among adults who are calcium- and vitamin D-replete.
- MK-7 supplementation may modestly reduce bone loss among postmenopausal women who are not receiving calcium and vitamin D supplements.
- Need randomized clinical trials using MK-7 in calcium and vitamin D-replete populations.

The Role of Vitamin K in Pathological Calcification

Osteoporosis & Vascular Calcification: A Calcium Imbalance?

Schulz, E. et al J Clin Endo & Metab. 2004

Osteoporosis & Vascular Calcification:

Complex Molecular Processes Common to Both Bone and Vessels!

Pathological Calcification Associated with Low VK

Tissue/Location	Disease outcome
Coronary arteries (atherosclerosis)	Coronary heart disease
Vascular (Monckeberg's sclerosis- medial layer)	Chronic kidney disease, Diabetes
Coronary valves	Aortic valve disease
Cartilage (chondrocalcinosis)	Osteoarthritis

VK is critical for some proteins to function

MGP Knockout Mouse Model

Trachea and aorta is completely calcified

Osteopenia

Abnormal calcification of cartilage

Luo et al, Nature 1997

Central Hypothesis

Excessively High Amounts of the Active Form of Vitamin D causes Kidney Calcification

1, 25 (OH)₂D₃ causes kidney calcification in mice model

	1,25(OH) ₂ D ₃ (µg/kg diet)			
	0	2.5	5.0	
%calcium deposits	0/14 (0%)	4/14 (28%)	9/11 (82%)	

Mernitz et al. 2007

1, 25 (OH)₂D₃ ↑ MGP and in the absence of vitamin K, ↑ non-functional MGP

1,25(OH) ₂ D ₃ (μg /kg diet)	Total MGP	Non Functional MGP: Functional MGP
0	12.6	1:1
2.5	23.2	1.6:1
5.0	27.3	1.7:1

Fu et al. 2008

But We Do Not Consume Vitamin D in the Form of Calcitriol !!!!

Holick M NEJM 2007

Can we stop or even <u>regress</u> pre-formed arterial calcification with vitamin K?

37% reduction

Phylloquinone supplementation reduced coronary artery calcification progression

Mean (SEM) 3-year change in CAC in older men and women (60-80 yrs old); Vitamin D and calcium replete

What does this mean?

 Vitamin K appears to control progression of abnormal calcification

There is currently no evidence that very high vitamin
 D intake causes increased calcification in humans

 Current guidance: Eat a diet rich in vegetables and plant oils for vitamin K

Frequently Asked Questions Regarding Vitamin K and Vitamin D

- What is the best form of vitamin K to consume and how much should I consume?
- Is it important to consume vitamin K with vitamin D supplements?
- What is the right balance between calcium, vitamin D and vitamin K?

Thank you for listening, and feel free to email me at:

sarah.booth@tufts.edu

